
�

Requirements Engineering 3:
“Systems Engineering

& Requirements Engineering”

Steve Easterbrook
9/3/97

�

Outline

Application and Machine Domains

Phenomenology

Modeling

Classifying problem domains

Intro to systems engineering

�

Some definitions

• ‘Machine’
ÀWe are interested in software systems
ÀWe will call the software system to be developed ‘the machine’
À The hardware only exists to run the software, hence is also part of the

machine

• ‘Application Domain’
ÀA machine will interact with its environment
ÀA machine is built to serve some purpose in the world
À The aspect of the environment that defines the machine’s purpose is it’s

application domain
À The application domain is often a human activity system.

Source: Adapted from Jackson, 1995, p72

�

What vs. How

• “Requirements should specify ‘what’ without
specifying ‘how’”
ÀWhat does a web browser do?
ÀWhat does a car do?

• ‘What’ refers to a system’s purpose
À it is external to the system
À it is a property of the application domain

• ‘How’ refers to a system’s structure and behavior
À it is internal to the system
À it is a property of the machine domain

Source: Adapted from Jackson, 1995, p207

�

Application Domains

• A machine is designed to be installed in the world to
achieve some purpose
ÀApplication domain is the aspect of the world that defines that purpose

• Application domain ≠ Environment
À (except when environment is defined solely in terms of the human activity

system in which the machine is embedded)

• Requirements only exist in the application domain

• Distinguishing between the machine and the
application domain is the first and most crucial step in
requirements engineering

Source: Adapted from Jackson, 1995, p9-11

�

Some examples

• Airline Reservation System

• A payroll Accounting System

• A Flight Control System

• An Operating System

• A Print Utility

• A Web Browser

• Your example here

�

Implementation Bias

• Implementation bias is the inclusion of requirements
that have no basis in the application domain
À i.e. mixing some ‘how’ into the requirements

• Examples:
ÀThe dictionary shall be stored in a hash table
ÀThe patient records shall be stored in a database

Source: Adapted from Jackson, 1995, p98

�

Which are valid requirements?

• The software shall be written in FORTRAN.

• The software shall respond to all requests within 5
seconds.

• The software shall be composed of the following 23
modules

• The software shall use the following fifteen menu
screens whenever it is communicating with the user....

Source: Adapted from Davis, 1990, p34

�

Phenomena

• Phenomena are what appear to exist when you
observe the world
À phenomenology: the study of phenomena
À ontology: the study of what really does exist (independently from any

observer)
ÀWeltanschauung: a world view that defines the set of phenomena that an

observer is willing (likely) to observe (‘viewpoint’)

• Any method embodies a particular viewpoint:
ÀOO sees the world as objects with internal state that respond to stimuli
À SA sees the world as processes that transform data
ÀNatural language also defines a viewpoint

• By restricting the set of phenomena you can describe,
a method restricts what you will observe

Source: Adapted from Jackson, 1995, p143

��

Shared Phenomenology

Application Domain Machine Domain

Internal
machine

phenomena

Shared
phenomena

(I.e. the interface)

Environment
phenomena

Requirements
live here

Programs
live hereSpecifications

live here
Source: Adapted from Jackson, 1995, p170

��

Shared Phenomena

• E.g. vending machine:

Vending
machine

Customer
VC

ok_coin, bad_coin,
choc, clunk, refill

pay, cheat, choc, arrive,
leave, curse

insert, choc

Note: okay_coin and bad_coin both map to the insert event;
pay and cheat both map to the insert event

Shared
phenomena Customer

phenomena
Machine phenomena

Source: Adapted from Jackson, 1995, p179-180

��

Requirements as Application Phenomena

• For a program to satisfy a requirement, we need to
worry about:
ÀThe properties of the computer (C)
ÀThe properties of the program (P)
ÀThe properties of the machine in the application domain (I.e. the

specification, S)
ÀThe properties of the domain independent of the machine (D)
ÀThe requirements for the machine (R)

• Demonstration that P satisfies R is then a two step
process:
ÀDo C and P imply S?
ÀDo S and D imply R?

Application Domain Machine Domain

Source: Adapted from Jackson, 1995, p170-171

��

Example

• Requirement R:
À “Reverse thrust shall only be enabled when the aircraft is moving on the

runway”

• Domain Properties D:
ÀWheel pulses on if and only if wheels turning
ÀWheels turning if and only if moving on runway

• Specification S:
ÀReverse thrust enabled if and only if wheel pulses on

• S + D imply R
ÀBut what if the domain model is wrong?

Source: Adapted from Jackson, 1995, p172

��

In the mood
• Mood (of a verb):

À Indicative: asserts a fact (“you sing”)
À Interrogative: asks a question (“are you singing”)
À Imperative: conveys a command (“Sing!”)
ÀSubjunctive: states a possibility (“I might sing”)
ÀOptative: expresses a wish (“may you sing”)

• ‘Shall’ and ‘will’ can be used in different moods:
À “I shall drown. No one will save me”
À “I will drown. No one shall save me”

• For requirements engineering:
À use the indicative mood for domain properties
À use the optative mood for requirements

• Never mix moods in the same description.
ÀLabel the entire description with a single mood
À Forget about linguistic subtleties within the description
ÀAnyway, mood changes as development progresses!

Source: Adapted from Jackson, 1995, p125-127

��

Indicative or Optative?
• The elevator never goes from the nth to the n+2th floor without passing

the n+1th floor

• The elevator never passes a floor for which the floor selection light
inside the car is illuminated without stopping at that floor

• If the motor polarity is set to up, and the motor switch setting changed
from off to on the elevator starts to rise within 250ms

• If the up arrow indicator at a floor is not illuminated when the lift stops at
the floor, it will not leave in an upwards direction

• The doors are never open at a floor unless the elevator is stationary at
that floor

• When the elevator arrives at a floor, the elevator-present sensor at the
floor is set to on.

• If an up call button at a floor is pressed when the corresponding light is
off, the light comes on, and remains on until the call is serviced by the
elevator stopping at that floor and leaving in an upwards direction.

Source: Adapted from Jackson, 1995, p126

��

Fun with natural language...

• Shake well before enjoying

• Shake well before opening

• Shirts must be worn

• Your call will be answered in
the order it was received

• If party A calls party B and
party B is idle, then party B’s
phone shall ring

• No smoking

• Your satisfaction is
guaranteed

• Maintain speed

��

Descriptions
• A designation

À singles out a phenomena of interest
À tells you how to recognize it
À gives it a name
ÀA designation is always informal, as it maps from the fuzzy phenomena to

formal language

• A Definition
À gives a formal definition of a term that may be used in other descriptions
ÀNote: definitions can be more or less useful, but never right or wrong.

• A refutable description
À states some property of a domain that could in principle be refuted
ÀMight not be practical to refute it, but refutation should be conceivable
ÀRefutability depends on an appeal to the designated phenomena of the

domain being described

• A rough sketch
À is a tentative description that is being developed
ÀMay contain undefined terms

Source: Adapted from Jackson, 1995, p58-59

��

Examples

• Designation:
ÀMother(x, m) denotes that m is the genetic mother of x

• Definition:
ÀChild (x, y) is defined as mother(y, x) or father (y, x)

• Refutable Description:
À For all m and x, Mother(x, m) implies not(Mother(m, x))

• A rough sketch
À ‘Everyone really belongs to just one family’

Source: Adapted from Jackson, 1995, p58-59

��

Models

• Three types of model
À iconic: e.g. a sculpture
À analogical: e.g. a model airplane
À analytical: e.g. a set of a mathematical equations representing the economy

• A model is more than just a description
À it has its own phenomena, and its own relationships among those

phenomena.
À The model is only useful if the model’s phenomena correspond in a

systematic way to the phenomena of the domain being modeled.

Source: Adapted from Jackson, 1995, p120-122

��

Modeling Example

Authors
Novels
Wrote

For every x, at
least one y exists
such that P(x, y)

A-records
B-records

A → B

The
application

domain

Designations for
the application

domain

The
common

description

The
model’s
domain

Designations
for the model’s
domain

X = Novel
Y = Author
P = Wrote

X = A=records
Y = B-records

P = A → B

Source: Adapted from Jackson, 1995, p123

��

Dangers of modeling

• The model is never perfect:
ÀThere may be phenomena in the model that are not present in the

application domain
ÀThere may be phenomena in the application domain that are not in the

model
Application

domain

Shared
description

Properties only true of
the modeling domain

Properties only
true of the

application domain

Modeling
domain

Source: Adapted from Jackson, 1995, p124-5

��

Classifying Application Domains

• Difficulty of Problem
ÀClassify as Hard (HA) and Not Hard (NH)
ÀHard: never been done, or past solutions have failed
ÀNot Hard: old problems, whose solutions are well known
ÀExamples:

HA: Landing a person on Mars
NH: Patient Monitoring

• Relationship in time between data and processing
ÀClassify as Static (ST) or Dynamic (DY)
À Static: all input data available before processing starts
ÀDynamic: data continues to arrive during processing (includes all interactive

and process control systems)
ÀExamples:

ST: Payroll
DY: Word Processor

Source: Adapted from Davis, 1990, p30

��

More axes...

• Number of simultaneous tasks:
ÀClassify as Sequential (SE) or Parallel (PA)
ÀExamples:

SE: Compiler
PA: Telephone Switching

• Relative Difficulty of data, control and algorithmic
aspects of the problem
ÀWhich is hardest to specify: Data (DA), Control (CO) or algorithm (AL)
ÀData-hard: complex data moves across system boundary
ÀControl-hard: how does the system control its environment (or vice versa)
ÀAlgorithm-hard: what processing must the system perform.
ÀMany application domains exhibit more than one of these.
ÀExamples:

DA: Payroll
CO: Patient Monitoring
AL: Compiler

Source: Adapted from Davis, 1990, p31

��

More Axes...

• Deterministic vs. Non-deterministic
À (Predictability of output for given input)
ÀDeterministic (DE): same answer given the same inputs
ÀNon-deterministic (ND): system’s responses are not well understood; systems

have to make decisions using partial information.
ÀExamples:

DE: Compiler
ND: Disease diagnosis

Source: Adapted from Davis, 1990, p32

��

Categorization Exercise

• Using:
ÀHA/NH; ST/DY; SE/PA; DA/CO/AL; DE/ND

• Classify:
ÀA patient monitoring System that sounds alarms whenever a patients vital

signs exceed acceptable ranges
ÀAn elevator control system that controls the movement of elevators and

dispatches them to appropriate floors
ÀA robot lawnmower that can be place on any lawn and will cut all contiguous

areas of grass without hitting such items as shrubs, sidewalks, and trees.
ÀAn automatic hair cutter that you sit under after telling it what style of

haircut you want and which will cut your hair accordingly
ÀA payroll program that accepts time cards and generates correct paychecks
ÀA private automatic branch exchange (PABX) that provides telephone

services
ÀA fully automatic automobile production line

Source: Adapted from Davis, 1990, p35

��

Systems Engineering

• Definition
ÀThere is no standard understanding of system engineering
ÀMore of a philosophy than a discipline
ÀChallenge: Ensure development of optimum solution to meet all technical

requirements and provides proper balance of performance, cost, and
schedule

• System Engineer’s Responsibilities:
ÀTechnical Interface with customer
ÀRequirements definition, management, analysis, and flowdown
ÀVerification planning and audit
ÀValidation planning and audit
À Interface Management
ÀRisk and Opportunity analysis and management
ÀChange management and configuration control

Source: Adapted from Forsberg & Mooz, 1997, p44

��

Challenges for Systems Engineering

• User Requirements are often not well identified and
documented

• Insufficient system studies and analyses performed
during study period

• Specs contain TBDs that the customer will not commit
to resolving by a specified date

• System concept and operational environment are not
well understood

Source: Adapted from Forsberg & Mooz, 1997, p47

��

...More challenges

• The problem context and user interface are not well
understood

• Schedule and budget estimates are unrealistic

• Insufficient preparation for system operation

• Rapidly changing technology (hence pressure to
shorten lifecycle)

• Pressure to shorten lifecycle creates pressure to
accept point designs

Source: Adapted from Forsberg & Mooz, 1997, p48

��

Typical Org structure
Project

Manager

Project
Engineer

Project
Administrator

Chief System
Engineer

Project
Engineer

(product
team #3)

Project
Engineer

(product
team #2)

Project
Engineer

(product
team #1)

Software
Design

Quality
Assurance

QA office

System
Engineering

Product Team

Source: Adapted from Forsberg & Mooz, 1997, p52

��

V-model for Systems Engineering

Approved
baseline

Baseline
being

considered

Planned
Verification

Baseline
verification

Off-core
risk and opportunity

management
investigations and

actions

Off-core
user
discussions and
approvals

Baselines to
be considered

Source: Adapted from Forsberg & Mooz, 1997, p55

��

Next Week

• Software Requirements Specifications

• Qualities of a good SRS

• Documentation Standards

• Formal Inspection exercise

��

References

• Jackson, M. “Software Requirements & Specifications: A Lexicon of Practice,
Principles and Prejudices”. Addison-Wesley, 1995.

• Davis, A. M. “Software Requirements: Analysis and Specification”. Prentice-
Hall, 1990.

• Forsberg K. and Mooz H. “System Engineering Overview”. In Thayer, R. H
and Dorfman, M. (eds.) “Software Requirements Engineering, Second Edition”.
IEEE Computer Society Press, 1997, p44-72

